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1 Introduction

Prior to any decision, oil and gas engineers must go through a long process of checking whether
it is worthy or not exploring a given field. They need to have an idea about the amount of
hydrocarbon present in the reservoir and how it can be extracted. To this end, it is necessary
to have an insight on different reservoir parameters such as the permeability and the porosity.
In the last three decades, scientists and engineers have been focusing on the use of Artificial
Intelligence to investigate reservoir characteristics and they have been very successful in that.
Artificial Neural Networks (combined with other techniques) have been use to predict some
properties from well log data (Bhatt & Helle, 2002; Majdi et al., 2010; Verma et al., 2014), to
characterize fractured reservoirs (Adibifard et al., 2014; El Ouahed, 2005), to determine lithofa-
cies and lithology (Bohling & Dubois, 2002; Negi, 2006) and in history matching (Maschio et al.,
2010; Silva et al., 2007).

In addition to providing highly accurate results, in comparison with the conventional single-
processor machines, ANNs are fault tolerant, can identify new objects and can predict future
events.

A simple system which occurs in the theory of Neural Networks is the following

x′i(t) = −ai(t)xi(t) +
m∑
j=1

fij (t, xj(t)) + Ii(t), t ≥ 0, i = 1, ...,m (1)

with given initial data xi(0) = xi0, i = 1, ...,m. It is known under the name: Hopfield neural
network. The functions Ii(t), i, j = 1, ...,m are real-valued continuous functions and ai(t),
i = 1, ...,m are nonnegative continuous functions. The functions fij are the activation functions.
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Artificial Neural Network (ANN) is an information processing device that has a broad spec-
trum of application. Some of the applications are: target marketing, consumer behavior anal-
ysis, credit scoring, strategic planning and performance, data mining, price forecast, physi-
cal system modelling, soil behavior, soil swelling, speech processing, traveling salesman, pat-
tern recognition (Bouzerdoum & Pattison, 1993; Chua & Roska, 1990; Crespi, 1999; Hopfield,
1982; Hopfield & Tank, 1986; Inoue, 1996; Kennedy & Chua, 1998; Kosko, 1991; Mohamad,
2007; Qiao et al., 2001; Sudharsanan & Sundareshan, 1991; Van den Driessche & Zou, 1998;
Wu & Xue, 1996).

In contrast to single-processor computers (based on the von Neumann architecture), which
perform their tasks in sequence, ANNs are composed of many processors which are highly
connected and work in parallel. A processor receives signals from the input layer, processes
them using a transfer function and then sends the processed information to the subsequent
layer.

Apart from some papers, see for instance (Forti et al., 2005; Forti & Tesi, 1995; Huang et al.,
2009; Tatar, 2012, 2014a,b,c,d, 2015a,b, 2017; Wu, 2009; Wu et al., 2011; Wu & Xue, 2008) all
the other existing works in the literature assume that the activation functions are at least Lip-
schitz continuous (Bouzerdoum & Pattison, 1993; Chua & Roska, 1990; Crespi, 1999; Hopfield,
1982; Hopfield & Tank, 1986; Inoue, 1996; Kennedy & Chua, 1998; Kosko, 1991; Mohamad,
2007; Qiao et al., 2001; Sudharsanan & Sundareshan, 1991; Van den Driessche & Zou, 1998;
Wu & Xue, 1996). In applications, activation functions which do not satisfy this condition
are not rare (see (Kosko, 1991)). Therefore, it is of great importance to have some insight about
these cases too. It is also worth noting that most of the works on variable coefficients treat
rather the stability of periodic solutions (Huang et al., 2009; Song, 2008).

Here (for simplicity) we consider activation functions fij satisfying

|fij (t, x)− fij (t, y)| ≤ bij(t)Lj (t, |x− y|) , i, j = 1, ...,m (2)

(instead of two subscripts in Lij) and Lj are nonlinearities of ”generalized” (L)-type i.e such
that

0 ≤ Lj(t, x)− Lj(t, y) ≤ Mj(t, y)gj(x− y), t ∈ I, x ≥ y ≥ 0, j = 1, ...,m (3)

where gj are nondecreasing continuous functions on R+ = [0,+∞) with gj(u) > 0 for u > 0 and
Mj : I × R+ → R+, j = 1, ...,m are nondecreasing continuous functions. The case gj(u) = u,
j = 1, ...,m corresponds to the (L)-type nonlinearities introduced in Dragomir (1987). In fact,
we will need to generalize a lemma in Dragomir (1987) to prove our result.

In the next section we prepare some material and give two lemmas which will be used later.
Section 3 contains the statement and proof of our result. In Section 4 we treat the constant
coefficients case as a special case and provide some numerical simulations illustrating our result.

2 Preliminaries

In case of time-independent coefficients and functions, the ”equilibrium” is denoted by (x∗1, ...,
x∗m)T . It is solution of

0 = −aix
∗
i +

m∑
j=1

fij
(
x∗j
)
+ Ii, i = 1, ...,m, t ≥ 0.

In case of time-dependent coefficients and functions, we may assume that (x∗1, ..., x
∗
m)T is

any final (desired) state we want to reach. We introduce the controls ui(t) by

0 = −ai(t)x
∗
i +

m∑
j=1

fij
(
t, x∗j

)
+ Ii(t) + ui(t), i = 1, ...,m, t ≥ 0. (4)
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Here, we assume the existence of a unique equilibrium in the time-independent case. Otherwise,
we consider the difference of any two solutions xi(t) and x∗i (t) and prove the convergence to zero
(in an exponential manner).

Let I ⊂ R, and let g1, g2 : I → R\{0}. We write g1 ∝ g2 if g2/g1 is nondecreasing in I.
The first lemma is the Bihari-Gronwall inequality with several integrals (Pinto, 1990).

Lemma 1. Let kj(t), j = 1, ..., n be nonnegative continuous functions in J := [α, β], gj(u),
j = 1, ..., n are nondecreasing continuous functions in R+, with gj(u) > 0 for u > 0, a > 0
and u(t) is a nonnegative continuous functions in J. If g1 ∝ g2 ∝ ... ∝ gn in (0,∞), then the
inequality

u(t) ≤ a+
∑n

j=1

∫ t

α
kj(s)gj(u(s))ds, t ∈ J,

implies that

u(t) ≤ G−1
n

[
Gn (cn−1) +

∫ t

α
kn(s)ds

]
, α ≤ t ≤ β0

where c0 := a,

cj := G−1
j

[
Gj (cj−1) +

∫ β0

α
kj(s)ds

]
, j = 1, ..., n− 1,

Gj (u) :=

∫ u

uj

dx

gj(x)
, u > 0 (uj > 0, j = 1, ..., n),

G−1
j is the inverse of Gj and β0 is the largest number such that∫ β0

α
kj(s)ds ≤

∫ u

cj−1

dx

gj(x)
, j = 1, ..., n.

This lemma is generalized, for instance, to a = a(t) in Pinto (1990). It has been shown, in
particular, that the c′js and the bound on u(t) do not depend on the choice of (uj in) Gj (u) .

Next, we introduce and prove a lemma which is in fact similar to Dragomir’s Lemma
(Dragomir, 1987) but with general functions gj instead of the identity.

Lemma 2. Let u : I = [α, β] → R+ be a continuous function, a > 0 and b(t) a strictly positive
continuously differentiable function. Assume that Lj : I×R+ → R+, j = 1, ...,m are continuous
functions satisfying

0 ≤ Lj(t, x)− Lj(t, y) ≤ Mj(t, y)gj(x− y), t ∈ I, x ≥ y ≥ 0, j = 1, ...,m

where Mj : I×R+ → R+ and gj : R+ → R+, j = 1, ...,m are nondecreasing continuous functions
satisfying gj(u) > 0 for u > 0 and g1 ∝ g2 ∝ ... ∝ gm. Moreover, let g0(u) = u. If

u(t) ≤ a+ b(t)
∑m

j=1

∫ t

α
Lj(s, u(s))ds, t ∈ I,

then

u(t) ≤ a+ b(t)
∑m

j=1

∫ t

α
Lj (s, a+ cm(s)) ds,

on some sub-interval [α, β0], with

cj(t) := G−1
j

[
Gj (cj−1(t)) +

∫ t

α
kj(s)ds

]
, j = 0, 1, ...,m,

where

c−1(t) :=
∑m

j=1

∫ t

α
b(s)Lj(s, a)ds, k0(s) :=

b′(s)

b(s)
,
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kj(s) := b(s)Mj(s, a), j = 1, ...,m,

and

Gj (u) :=

∫ u

uj

dx

gj(x)
, u > 0 (uj > 0, j = 0, 1, ...,m).

Proof. Let z(t) = b(t)
∑m

j=1

∫ t
α Lj(s, u(s))ds, t ∈ I. Then z(α) = 0,

u(t) ≤ a+ z(t), t ∈ I

and, adding and subtracting the expression b(t)
∑m

j=1 Lj(t, a)

z′(t) = b′(t)
∑m

j=1

∫ t
α Lj(s, u(s))ds+ b(t)

∑m
j=1 Lj(t, u(t))

≤ b′(t)
b(t) b(t)

∑m
j=1

∫ t
α Lj(s, u(s))ds

+b(t)
∑m

j=1 Lj (t, a+ z(t))− b(t)
∑m

j=1 Lj(t, a) + b(t)
∑m

j=1 Lj(t, a), t ∈ I.

By our assumption on Lj , we may write

z′(t) ≤ b′(t)

b(t)
z(t) + b(t)

∑m

j=1
Mj(t, a)gj(z(t)) + b(t)

∑m

j=1
Lj(t, a), t ∈ I. (5)

Therefore, by integrating both sides of (5), we see that

z(t) ≤
∑m

j=1

∫ t

α
b(s)Lj(s, a)ds+

∫ t

α

[
b′(s)

b(s)
z(s) + b(s)

∑m

j=1
Mj(s, a)gj(z(s))

]
ds

or in short

z(t) ≤ A(t) +
∑m

j=0

∫ t

α
kj(s)gj(z(s))ds

with

A(t) :=
∑m

j=1

∫ t

α
b(s)Lj(s, a)ds

g0(v) := v and k0(σ) = b′(σ)
b(σ) , kj(σ) = b(σ)Mj(σ, a), j = 1, ...,m. An application of Lemma 1

yields
u(t) ≤ a+ z(t) ≤ a+ cm(t), α ≤ t < β0

where cm(t) is as in the statement of the theorem.

The strict positivity of b(t) is not restrictive as we can always add a positive constant to
b(t). Also, we can consider a = a(t) with a(t) nondecreasingness or use ã(t) = max a(t) instead
of a(t).

2.1 The exponential decay

In this section we state and prove our result. We denote by yi(t) = xi(t)− x∗i , y(t) =
m∑
i=1

|yi(t)|,

a(t) := min1≤i≤m {ai(t)} and bi(t) :=
m∑
j=1

Li |bji(t)| , i = 1, ...,m where Li are defined in (2).

Theorem 1. Assume that fij satisfy (2)-(3), i, j = 1, ...,m and Mj are continuous nondecreas-
ing functions. Then, there exists a β0 > 0 such that

y(t) ≤ exp
(
−
∫ t
0 a(s)ds

)
×

[
y(0) +

m∑
j=1

∫ t
0

(
m∑

i,j=1
b̃ij(s)

)
Lj(s, y(0) + cm(s))ds

]
, 0 ≤ t < β0
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where

b̃ij(t) := bij(t) exp

∫ t

0
a(s)ds, c0(t) :=

∑m

j=1

∫ t

α

(
m∑
i=1

b̃ij(s)

)
Lj(s, y(0))ds,

kj(s) :=

(
m∑
i=1

b̃ij(s)

)
Mj(s, y(0)), j = 1, ...,m,

cj(t) := G−1
j

[
Gj (cj−1(t)) +

∫ t

0
kj(s)ds

]
, j = 1, ...,m,

and

Gj (u) :=

∫ u

uj

dx

gj(x)
, u > 0 (uj > 0, j = 1, ...,m).

Proof. It is not difficult to see, from the system and our assumptions, that

D+ |yi(t)| ≤ −ai(t) |yi(t)|+
m∑
j=1

bij(t)Lj (t, |yj(t)|) , t > 0, i = 1, ...,m

or

D+y(t) ≤ −min1≤i≤m {ai(t)} y(t) +
m∑

i,j=1
bij(t)Lj (t, y(t))

≤ −a(t)y(t) +
m∑

i,j=1
bij(t)Lj (t, y(t)) , t > 0

(6)

where D+ denotes the right Dini derivative. Therefore, the relation (6) implies

D+
[
y(t) exp

∫ t
0 a(s)ds

]
≤

m∑
i,j=1

bij(t)Lj (t, y(t)) exp
(∫ t

0 a(s)ds
)

≤
m∑

i,j=1
b̃ij(t)Lj (t, y(t)) , t > 0

(7)

where b̃ij(t) := bij(t) exp
(∫ t

0 a(s)ds
)
, and by comparison and integration we entail from (7)

that

y(t) exp

(∫ t

0
a(s)ds

)
≤ y(0) +

m∑
i,j=1

∫ t

0
b̃ij(s)Lj (s, y(s)) ds

or

ỹ(t) ≤ y(0) +
m∑

i,j=1

∫ t

0
b̃ij(s)Lj (s, y(s)) ds, t > 0

where ỹ(t) := y(t) exp
(∫ t

0 a(s)ds
)
. Note that Lj (t, y(t)) ≤ Lj (t, ỹ(t)) because 0 ≤ Lj (t, x) −

Lj (t, y) when x ≥ y by definition and assumptions. Hence

ỹ(t) ≤ y(0) +

m∑
j=1

∫ t

0

 m∑
i,j=1

b̃ij(s)

Lj (s, ỹ(s)) ds, t > 0 (8)

and we can apply Lemma 2 to (8) to obtain

ỹ(t) ≤ y(0) +
m∑
j=1

∫ t

0

(
m∑
i=1

b̃ij(s)

)
Lj(s, y(0) + cm(s))ds, 0 ≤ t < β0

203



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.4, N.3, 2019

for some β0 > 0 where

c0(t) :=
∑m

j=1

∫ t

α

(
m∑
i=1

b̃ij(s)

)
Lj(s, y(0))ds,

kj(s) :=

(
m∑
i=1

b̃ij(s)

)
Mj(s, y(0)), j = 1, ...,m,

cj(t) := G−1
j

[
Gj (cj−1(t)) +

∫ t

0
kj(s)ds

]
, j = 1, ...,m,

and

Gj (u) :=

∫ u

uj

dx

gj(x)
, u > 0 (uj > 0, j = 1, ...,m).

The proof is complete.

Corollary 1. In case β0 is infinite we have global existence. This occurs when∫ ∞

0
kj(s)ds ≤

∫ ∞

ωj−1

dσ

gj(σ)
, j = 1, ...,m.

Remark. In the situation of the corollary, the asymptotic stability has the rate

exp

(
−
∫ t

0
a(s)ds

) m∑
j=1

∫ t

0

(
m∑
i=1

b̃ij(s)

)
Lj(s, y(0) + cm(s))ds.

That is, solutions approach the equilibrium at an exponential rate if
∫ t
0 a(s)ds → ∞ as t → ∞

and
m∑
j=1

∫ t

0

 m∑
i,j=1

b̃ij(s)

Lj(s, cm(s))ds

grows up at an exponential rate smaller than exp
(∫ t

0 a(s)ds
)
.

In case of control, the controls ui(t) (see (4)) are able to drive solutions of (1) to the prescribed
state (x∗1, ..., x

∗
m)T exponentially.

2.2 Constant coefficients case

Special case: We consider Problem (1) with constant coefficients. That is, ai(t) ≡ ai > 0,
ci(t) ≡ ci and instead of fij (t, xj(t)), we consider bijfj (xj(t)) , i, j = 1, ...,m. We obtain the
system

x′i(t) = −aixi(t) +
m∑
j=1

bijfj (xj(t)) + ci, i = 1, ...,m.

The equilibrium is defined through the system

0 = −aix
∗
i +

m∑
j=1

bijfj
(
x∗j
)
+ ci, i = 1, ...,m.

It is assumed to exist and is unique. The functions fj are assumed to satisfy

|fj (x)− fj (y)| ≤ Lj (|x− y|) , j = 1, ...,m

and Lj are nonlinearities of ”generalized” (L)-type i.e such that

0 ≤ Lj(x)− Lj(y) ≤ Mj(y)gj(x− y), x ≥ y ≥ 0, j = 1, ...,m
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for some continuous and nondecreasing functions Mj and gj , j = 1, ...,m. The same argument
as in the proof of Theorem 1 shows that

y(t) ≤ e−at

y(0) + m∑
j=1

∫ t

0

(
m∑
i=1

b̃ij(s)

)
Lj(y(0) + cm(s))ds

 , t > 0

where b̃ij(s), Lj and cm are as in Theorem 1 with time independent coefficients. Observe here
that b̃ij(s) and cm(s) are of the order e−as. The best we can get is a bound.

In the next section we consider this case together with the case of variable bij of the form
bij(t) = e−bijt with bij > 0 to get a decay of this order.

3 Numerical study

In this section, we present numerical examples to illustrate our exponential stability result
for non-Lipschitz activation functions. We consider the following two dimensional, constant
coefficients system (the exponentials are parts of the functions fij):{

x′1(t) = −a1x1(t) + c11e
−β11txγ111 (t) + c12e

−β12txγ122 (t), t ≥ 0
x′2(t) = −a2x2(t) + c21e

−β21txγ211 (t) + c22e
−β22txγ222 (t), t ≥ 0

with βij ≥ 0, i, j = 1, 2 and subject to initial data [x1(0), x2(0)]
T . The exponents γij are chosen

within the interval (0, 1) to make the activation functions non-Lipschitz,

fij(t, x) := cije
−βijtx

γij
j (t), t ≥ 0.

We numerically treat the above system of nonlinear ordinary differential equations using the
fourth order Runge-Kutta method (RK4). First, let us show that the above system satisfies the
required stability conditions (2)-(3). Notice that

|fij(t, x1)− fij(t, x2)| = cije
−βijt|xγij1 (t)− x

γij
2 (t)|

≤ cije
−βijt|x1(t)− x2(t)|γij , i, j = 1, 2, t ≥ 0.

Therefore,
bij(t) := cije

−βijt and Lij(t, x) := |x|γij , t ≥ 0.

Also, for x1 ≥ x2,

0 ≤ Lij(t, x1)− Lij(t, x2) = |x1|γij − |x2|γij

≤ (x1 − x2)
γij =: gij(x1 − x2), t ≥ 0.

Hence, conditions (2)-(3) are satisfied. Since a = min{a1, a2}, we obtain

b̃ij(t) = bije
at, t ≥ 0

and taking M1 = M2 = 1, it follows that

kj(t) = b̃1j(t) + b̃2j(t) = (b1j + b2j)e
at, t ≥ 0.

Clearly, from the definition of gij , the system has a global solution since∫ ∞

0

dσ

gij(σ)
= ∞, i, j = 1, 2.

Now, we present two applications of the above system which illustrate the convergence to the
equilibrium.
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Figure 1: The dash- and solid-lines are the graphs of functions x1(t) and x2(t), respectively

Application 1: In this example, we take the following parameters: a1 = 2, a2 = 3, βij = 0,
cij = 1, i, j = 1, 2 and[

x1(0)
x2(0)

]
=

[
2
10

]
,

[
γ11 γ12
γ21 γ22

]
=

[
0.5 0.25
0.3 0.4

]
,

[
I11 I12
I21 I22

]
=

[
3 4
1 0.5

]

Fig. 1 shows that the numerical solution x = [x1(t), x2(t)]
T converges to the equilibrium

state x∗ = [5.2670, 0.6926]T .
Application 2: In this example, we consider the same inputs but with nonzero βij ,[

β11 β12
β21 β22

]
=

[
−0.2 0.25
0.3 0.4

]

Figure 2: The dash- and solid-lines are the graphs of functions x1(t) and x2(t), respectively
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Fig. 2 shows the convergence of the solution to zero.

Figure 3: The dash- and solid-lines are the graphs of functions ln (x1(t)) and ln (x2(t)) , respectively

Fig. 3 proves that ln(xi) decays linearly, and hence the solution is exponentially stable.
In conclusion, the above numerical applications agree with our exponential stability results.
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